Module 1: Introduction to Python

  • What is Python?
    • Overview of Python and its applications
    • Python’s history and community
    • Python’s strengths: readability, simplicity, and portability
  • Setting Up the Python Development Environment
    • Installing Python (Windows, macOS, Linux)
    • Introduction to Integrated Development Environments (IDEs): IDLE, PyCharm, Visual Studio Code
    • Writing and running the first Python program (“Hello, World!”)
  • Basic Python Syntax
    • Structure of a Python program
    • Comments and documentation in Python (#, docstrings)
    • Indentation and its importance in Python

Module 2: Variables, Data Types, and Operators

  • Variables and Constants
    • Defining and using variables
    • Naming conventions for variables
    • Assigning values to variables
  • Data Types
    • Primitive data types: integers, floats, strings, booleans
    • Understanding dynamic typing in Python
    • Type conversion (casting between types)
  • Operators
    • Arithmetic operators: +, -, *, /, %, //, **
    • Comparison operators: ==, !=, >, <, >=, <=
    • Logical operators: and, or, not
    • Assignment operators: =, +=, -=, *=, /=

Module 3: Control Flow and Decision Making

  • Conditional Statements
    • Using if, elif, and else for decision-making
    • Nested conditions
    • Boolean expressions and conditions
  • Loops
    • while loop: syntax and example
    • for loop: using range() function
    • Loop control statements: break, continue, pass
  • List Comprehension
    • Introduction to list comprehensions for concise looping
    • Examples of basic list comprehensions

Module 4: Functions and Modules

  • Defining Functions
    • Function syntax and parameters
    • Return values and the return statement
    • Function arguments (positional, keyword arguments)
  • Scope and Lifetime of Variables
    • Global vs. local variables
    • global and nonlocal keywords
  • Built-in Functions
    • Commonly used Python functions (print(), input(), len(), type())
  • Modules and Libraries
    • Importing and using built-in modules (math, random, datetime)
    • Creating custom Python modules
    • Introduction to import statement and from ... import syntax

Module 5: Data Structures in Python

  • Lists
    • Creating, accessing, and modifying lists
    • List methods (append(), remove(), sort(), pop())
    • Iterating over lists
  • Tuples
    • Understanding immutable tuples
    • Creating and accessing tuples
    • Tuple unpacking
  • Dictionaries
    • Key-value pairs in dictionaries
    • Creating, accessing, and modifying dictionaries
    • Dictionary methods (keys(), values(), items())
  • Sets
    • Understanding sets and set operations
    • Creating sets, adding/removing elements
    • Set operations (union, intersection, difference)

Module 6: File Handling

  • Working with Files
    • Opening, reading, and writing files in Python
    • File modes: 'r', 'w', 'a', 'r+'
    • Using with statement for automatic file closure
  • Reading and Writing Text Files
    • Using read(), readlines() for reading files
    • Using write() and writelines() for writing to files
  • Working with CSV Files
    • Introduction to CSV files and csv module
    • Reading and writing CSV files using Python

Module 7: Error Handling and Exceptions

  • Introduction to Exceptions
    • What are exceptions and why they occur
    • Common Python exceptions (e.g., ValueError, IndexError, TypeError)
  • Handling Exceptions
    • Using try, except to handle errors
    • Catching specific exceptions
    • Using else and finally clauses
  • Raising Exceptions
    • Using the raise statement to raise exceptions

Module 8: Object-Oriented Programming (OOP) in Python

  • Introduction to OOP
    • What is Object-Oriented Programming?
    • Classes and objects in Python
  • Defining Classes and Objects
    • Creating classes and initializing objects using __init__()
    • Instance variables and methods
    • Accessing attributes and calling methods
  • Inheritance and Polymorphism
    • Inheriting from other classes
    • Method overriding
    • The super() function
  • Encapsulation and Abstraction
    • Public, protected, and private members
    • Using getters and setters
    • Abstract classes and methods (introduction)

Module 9: Working with Libraries and Third-Party Packages

  • Installing and Using Third-Party Libraries
    • Introduction to pip (Python package installer)
    • Installing packages from PyPI (e.g., requests, numpy, pandas)
  • Popular Python Libraries
    • Working with NumPy for numerical operations
    • Using Pandas for data analysis
    • Introduction to Matplotlib for data visualization

Explore More

Data Analysis with SPSS

Module 1: Introduction to SPSS Module 2: Understanding the Data Structure in SPSS Module 3: Data Cleaning and Transformation Module 4: Descriptive Statistics Module 5: Inferential Statistics Module 6: Analyzing

Basic Mobile Application Development

Module 1: Introduction to Mobile Application Development Module 2: Mobile App Design Principles Module 3: Basics of Mobile Programming (iOS and Android) Module 4: User Interface (UI) Development Module 5:

Cyber Security

1. Introduction to Cybersecurity 2. Understanding Cyber Threats 3. Network Security 4. Cryptography and Encryption 5. Operating System and Endpoint Security 6. Web Application Security 7. Identity and Access Management