Module 1: Introduction to Python

  • What is Python?
    • Overview of Python and its applications
    • Python’s history and community
    • Python’s strengths: readability, simplicity, and portability
  • Setting Up the Python Development Environment
    • Installing Python (Windows, macOS, Linux)
    • Introduction to Integrated Development Environments (IDEs): IDLE, PyCharm, Visual Studio Code
    • Writing and running the first Python program (“Hello, World!”)
  • Basic Python Syntax
    • Structure of a Python program
    • Comments and documentation in Python (#, docstrings)
    • Indentation and its importance in Python

Module 2: Variables, Data Types, and Operators

  • Variables and Constants
    • Defining and using variables
    • Naming conventions for variables
    • Assigning values to variables
  • Data Types
    • Primitive data types: integers, floats, strings, booleans
    • Understanding dynamic typing in Python
    • Type conversion (casting between types)
  • Operators
    • Arithmetic operators: +, -, *, /, %, //, **
    • Comparison operators: ==, !=, >, <, >=, <=
    • Logical operators: and, or, not
    • Assignment operators: =, +=, -=, *=, /=

Module 3: Control Flow and Decision Making

  • Conditional Statements
    • Using if, elif, and else for decision-making
    • Nested conditions
    • Boolean expressions and conditions
  • Loops
    • while loop: syntax and example
    • for loop: using range() function
    • Loop control statements: break, continue, pass
  • List Comprehension
    • Introduction to list comprehensions for concise looping
    • Examples of basic list comprehensions

Module 4: Functions and Modules

  • Defining Functions
    • Function syntax and parameters
    • Return values and the return statement
    • Function arguments (positional, keyword arguments)
  • Scope and Lifetime of Variables
    • Global vs. local variables
    • global and nonlocal keywords
  • Built-in Functions
    • Commonly used Python functions (print(), input(), len(), type())
  • Modules and Libraries
    • Importing and using built-in modules (math, random, datetime)
    • Creating custom Python modules
    • Introduction to import statement and from ... import syntax

Module 5: Data Structures in Python

  • Lists
    • Creating, accessing, and modifying lists
    • List methods (append(), remove(), sort(), pop())
    • Iterating over lists
  • Tuples
    • Understanding immutable tuples
    • Creating and accessing tuples
    • Tuple unpacking
  • Dictionaries
    • Key-value pairs in dictionaries
    • Creating, accessing, and modifying dictionaries
    • Dictionary methods (keys(), values(), items())
  • Sets
    • Understanding sets and set operations
    • Creating sets, adding/removing elements
    • Set operations (union, intersection, difference)

Module 6: File Handling

  • Working with Files
    • Opening, reading, and writing files in Python
    • File modes: 'r', 'w', 'a', 'r+'
    • Using with statement for automatic file closure
  • Reading and Writing Text Files
    • Using read(), readlines() for reading files
    • Using write() and writelines() for writing to files
  • Working with CSV Files
    • Introduction to CSV files and csv module
    • Reading and writing CSV files using Python

Module 7: Error Handling and Exceptions

  • Introduction to Exceptions
    • What are exceptions and why they occur
    • Common Python exceptions (e.g., ValueError, IndexError, TypeError)
  • Handling Exceptions
    • Using try, except to handle errors
    • Catching specific exceptions
    • Using else and finally clauses
  • Raising Exceptions
    • Using the raise statement to raise exceptions

Module 8: Object-Oriented Programming (OOP) in Python

  • Introduction to OOP
    • What is Object-Oriented Programming?
    • Classes and objects in Python
  • Defining Classes and Objects
    • Creating classes and initializing objects using __init__()
    • Instance variables and methods
    • Accessing attributes and calling methods
  • Inheritance and Polymorphism
    • Inheriting from other classes
    • Method overriding
    • The super() function
  • Encapsulation and Abstraction
    • Public, protected, and private members
    • Using getters and setters
    • Abstract classes and methods (introduction)

Module 9: Working with Libraries and Third-Party Packages

  • Installing and Using Third-Party Libraries
    • Introduction to pip (Python package installer)
    • Installing packages from PyPI (e.g., requests, numpy, pandas)
  • Popular Python Libraries
    • Working with NumPy for numerical operations
    • Using Pandas for data analysis
    • Introduction to Matplotlib for data visualization

Explore More

Data Analysis with SPSS

Module 1: Introduction to SPSS Module 2: Understanding the Data Structure in SPSS Module 3: Data Cleaning and Transformation Module 4: Descriptive Statistics Module 5: Inferential Statistics Module 6: Analyzing

Python Programing

Module 1: Basic Python Programming 1.1 Introduction to Python 1.2 Python Basics 1.3 Control Flow 1.4 Functions 1.5 Data Structures 1.6 File Handling Module 2: Intermediate Python Programming 2.1 Object-Oriented

MICROSOFT OFFICE APPLICATION

Fundamental and Windows Internet Microsoft Office Word Microsoft Office Excel Microsoft Office Power Point Microsoft Office Access Entrepreneurship Exam Seminar Duration: 8 Weeks