Module 1: Introduction to Data Science

  • 1.1 What is Data Science?
    • Overview of Data Science and its applications
    • Data Science vs Machine Learning vs AI
    • The role of a Data Scientist
  • 1.2 Tools and Libraries for Data Science
    • Python for Data Science
    • Introduction to Jupyter Notebooks
    • Essential Libraries: Pandas, NumPy, Matplotlib, Seaborn

Module 2: Python for Data Science Basics

  • 2.1 Python Basics for Data Science
    • Variables, Data Types, Operators
    • Control Flow (if, else, loops)
    • Functions and Modules
    • Working with Python’s standard libraries
  • 2.2 Working with Data Structures
    • Lists, Tuples, Sets, and Dictionaries
    • List comprehensions
    • Iterators and Generators
  • 2.3 Data Handling and Manipulation with Pandas
    • Introduction to Pandas
    • DataFrames and Series
    • Importing Data (CSV, Excel, SQL, JSON)
    • Handling Missing Data
    • Filtering, Grouping, Sorting Data

Module 3: Data Visualization and Exploration

  • 3.1 Introduction to Data Visualization
    • Importance of Visualization in Data Science
    • Basic Plotting with Matplotlib
    • Plotting with Seaborn (Histograms, Scatter plots, Box plots)
  • 3.2 Advanced Visualization Techniques
    • Heatmaps, Pairplots, Violin Plots
    • Customizing Plots and Subplots
    • Plotly for Interactive Plots
  • 3.3 Exploratory Data Analysis (EDA)
    • Analyzing Distribution of Data
    • Identifying Outliers and Handling Them
    • Correlation and Causation
    • Feature Engineering and Transformation

Module 4: Statistical Analysis

  • 4.1 Introduction to Statistics for Data Science
    • Descriptive Statistics (Mean, Median, Mode, Standard Deviation)
    • Probability and Distributions (Normal, Binomial, Poisson)
    • Inferential Statistics (Hypothesis Testing, p-values)
  • 4.2 Correlation and Regression
    • Correlation Coefficients
    • Linear Regression
    • Multiple Regression Analysis
    • Assumptions of Regression Models
  • 4.3 Statistical Tests
    • T-tests, Chi-Square Tests, ANOVA
    • Confidence Intervals and Significance Tests

Module 5: Machine Learning with Python

  • 5.1 Introduction to Machine Learning
    • What is Machine Learning? Types of Machine Learning
    • Overview of Supervised vs Unsupervised Learning
    • Train-Test Split and Model Evaluation
    • Cross-Validation and Hyperparameter Tuning
  • 5.2 Supervised Learning Algorithms
    • Linear Regression
    • Logistic Regression
    • Decision Trees and Random Forests
    • Support Vector Machines (SVM)
    • K-Nearest Neighbors (KNN)
  • 5.3 Unsupervised Learning Algorithms
    • K-Means Clustering
    • Hierarchical Clustering
    • Principal Component Analysis (PCA)
    • DBSCAN
  • 5.4 Model Evaluation and Improvement
    • Accuracy, Precision, Recall, F1 Score
    • ROC Curve and AUC
    • Bias-Variance Tradeoff

Explore More

Python Programming (Begineer Level)

Module 1: Introduction to Python Module 2: Variables, Data Types, and Operators Module 3: Control Flow and Decision Making Module 4: Functions and Modules Module 5: Data Structures in Python

Python Programing

Module 1: Basic Python Programming 1.1 Introduction to Python 1.2 Python Basics 1.3 Control Flow 1.4 Functions 1.5 Data Structures 1.6 File Handling Module 2: Intermediate Python Programming 2.1 Object-Oriented

Web Design and Application Development(NodeJS , React,MySQL with MongoDB)

Module 1: Introduction to Web Development Module 2: Frontend Development with React Module 3: Backend Development with Node.js and Express.js Module 4: Full Stack Integration with Node.js, React, MySQL &